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ABSTRACT

Japanese automatic speech recognition (ASR) in conversation
is considered challenging and highly ambiguous because the
subjects are usually omitted and the number of homonyms
is quite large. Since the speaker’s utterance alone may not
provide enough information, the context of the previous ut-
terance from the dialog partner might help. A limited number
of studies have addressed the idea of incorporating dialog-
context information in end-to-end ASR tasks. However, these
have mainly focused on the English language. Furthermore,
although such models exploit dialog context history, the de-
coder handles the current input and the context simultane-
ously, ignoring the sequence of a conversation in the pro-
cess. In this study, we propose a Japanese ASR that considers
the dialog partner’s conversation context in a sequential man-
ner. Specifically, we use a multi-encoder sequential attention
network and investigate several possible architectures. The
experimental results reveal that context information helps to
improve recognition performance over standard ASR and sys-
tems that process the context at the same time.
Index Terms: end-to-end speech recognition, hierarchical at-
tention, context-aware, multi-encoder

1. INTRODUCTION

With the significant improvement of automatic speech recog-
nition (ASR) technology, voice-based services and devices
have become mainstream in recent years. For example, us-
ing our voice to directly control our TV or smart speakers is
becoming more prevalent. Leveraging ASR in contact cen-
ters for customer service is also gaining attention. Some ser-
vices use ASR with the intention of replacing human opera-
tors with autonomous contact centers run by machine. Others
maintain traditional call centers and use ASR to transcribe the
conversation between customers and operators. Those tran-
scriptions are then used to improve operational efficiency in
various ways, such as checking call content for NG words and
simplifying the creation of FAQs by sharing text. In Japan,
multiple companies have also started to provide ASR services
to contact centers, and this is becoming accepted as a solution
that can improve business efficiency.

However, the performance of ASR in Japanese contact
centers tends to result in lower recognition rates compared
to general speech recognition. One reason for this is that con-
versation in Japanese often omits grammatical subjects, and
the number of homonyms is quite large, making the mean-
ing highly ambiguous. Since the speaker’s utterance alone
may not provide enough information, it is essential to have
the context information of the previous utterances from the
dialog partner in addition to the current utterance. Since there
may be many ways to incorporate additional information in
ASR, an optimum mechanism to incorporate the additional
context of the dialog partners’ previous utterances needs to
be investigated.

Incorporating context has been studied since work began
on statistical speech recognition based on the Hidden Markov
Model (HMM) framework [1,2]. Most HMM-based or hybrid
DNN-HMM-based acoustic models were constructed with
context-dependent long acoustic units, such as triphones,
pentaphones, or longer [3–6]. Furthermore, in addition to
acoustic modeling, most language models also used n-grams
as the biasing context [7, 8]. However, the context used here
is still within a word or within a single utterance.

Recently, after the resurgence of deep learning, interest
has also surfaced in the possibility of applying a long con-
versational context within the neural-based ASR [9–13]. Ma-
sumura et al. [11] attempted to incorporate large context into
end-to-end ASR using a hierarchical encoder-decoder model.
Han et al. [13], on the other hand, proposed ContextNet, a
fully convolutional encoder that incorporates global context
information in convolution layers by adding squeeze-and-
excitation modules. Moreover, a study by Hori et al. [12]
constructed a Transformer-based architecture that accepts
multiple consecutive utterances at the same time and predicts
an output sequence for the last utterance. Nevertheless, these
studies have focused on utilizing the context information of
previous long conversations of the same speaker. Only a lim-
ited number of research works have addressed incorporating
dialog-context information in end-to-end ASR tasks. Fur-
thermore, the existing systems mainly focus on the English
language.



This research focuses on transcribing Japanese dialogs
and investigating multiple neural-based ASR architectures
that recognize target speech and information previously spo-
ken by the dialog partner as additional context to achieve
higher recognition accuracy than standard speech recogni-
tion without context information. Specifically, our proposed
network adopts attention-based end-to-end ASR [14], which
uses a multi-encoder mechanism to simultaneously encode
speech and context information and convert them into their
respective latent features. However, to maintain the sequence
of conversation, we propose using a sequential attention
network and processing those input features in a sequential
manner. The experimental results reveal that context informa-
tion helps to improve recognition performance over standard
ASR as well as versions that process the context at the same
time.

2. RELATED WORKS

Among the limited research works that focused on incorporat-
ing dialog context, a study by Kim et al. [15, 16] proposed to
embedded conversational context information within an end-
to-end encoder-decoder ASR framework. Their recent work
[17] is likely the only one that has used conversational-context
information for processing a long two-speaker dialog conver-
sation. However, although that model exploited dialog con-
text history, the decoder handled the current input and the con-
text simultaneously, ignoring the sequence of conversation in
the process. In contrast, our proposed framework processes
the dialog partner’s conversation context sequentially using a
sequential attention network.

Various architectures that incorporate additional informa-
tion have been explored not only in the ASR research field
but also other domains. Especially in machine translation
research, many approaches and architectures have been pro-
posed recently to exploit additional context information in
machine translation using a multi-encoder and multiple atten-
tion mechanisms. Broadly speaking, those methods can be
classified into two main types (following a previous defini-
tion [18]): the first one is “flat attention combination,” where
the decoder learns the distribution jointly over all hidden en-
coder states simultaneously or produces the final output by
simply combining two decoder outputs, and the second one is
“hierarchical combination,” in which the decoder factorizes
the distribution over individual encoders one by one. Some
studies focused only on a flat attention combination [19, 20]
or only on a hierarchical combination [21, 22], while other
approaches attempted to explore both methods [18, 23].

However, exploring various architectures to incorporate
dialog-context with the ASR framework has not been at-
tempted. In this study, we explore various architectures to
consider the dialog partner’s conversation context within
ASR. In contrast with HAN, which incorporates different
levels of inputs (word-level layer, document-level layer, etc.),
we focus on sequentially incorporating conversation context

within the same level and propose using sequential attention
networks. For comparison, we also consider a structure that
uses a flat attention combination similar to the one used in a
previous work [17].

3. MULTI-ENCODER
SEQUENTIAL ATTENTION NETWORK

In a conversational speech with K number of utterances
u = [u1, u2, ..., uk, ..., uK ], given acoustic speech features of
uk x = [x1, x2, ..., xt, ..., xT ] with length T , attention-based
encoder decoder ASR directly models conditional probabil-
ity p(y|x) and an output that corresponds character/word
sequences y = [y1, y2, ..., yn, ..., yN ] with length N . The
overall structure consists of encoder, decoder, and attention
modules. First, the speech encoder transforms the acoustic
speech features into hidden vector representation

HSpEnc = SpEnc(x). (1)

Then the attention decoder predicts y based on the hidden
representations of the current speech feature and the entire
sequence of the previous output

yn = p(yn|y<n,x) = AttDec(y<n, HSpEnc). (2)

Now, assuming that our conversational speech is based
on a dialog between two-party speakers A and B, within a
dialog we have K number of utterances u = [u1

A, u2
B , ...

, uk−1
A, uk

B , ..., uK−1
B , uK

B ]. Our aim is to recognize
acoustic speech features of x of utterance uk

B by incorporat-
ing the context from the dialog partner of previous utterance
uk−1

A. Here, we investigate several architectures, including
the multi-encoder mechanism illustrated in Figure 1.

3.1. Flat Attention Combination

This model (Figure 1(a)), which is similar to that applied pre-
viously [17], has two independent encoder-decoder networks:
one acts as an ASR, while the other performs text-to-text re-
sponse generation. Given acoustic speech features of x of
utterance uk

B from speaker B, the encoder-decoder network
outputs the corresponding character sequences zBn

HSpEnc = SpEnc(xB). (3)

zBn = AttDec(yB
<n, HSpEnc). (4)

On the other hand, having the context from speaker A of
the previous utterance uA

k−1, the second encoder-decoder net-
work outputs the response of the current utterance, which con-
siders as the dialog context cAn

HCtxEnc = ContextEnc(uA
k−1). (5)

cAn = ContextAttDec(yB
<n, HCtxEnc). (6)



Fig. 1. A model of related works: (a) Flat attention combination (“FlatAttComb”); Proposed Models: (b) Sequential attention
combination (“SeqAttComb”); (c) Sequential attention combination and bypass connection (“SeqAttComb+Bypass”).

Finally, zBn and cAn are combined to obtain the final text yB
n .

yB
n = cAn + zBn . (7)

Since the final output is calculated by simply combining two
decoder outputs, we call this method the “Flat attention com-
bination” (denoted as “FlatAttComb”).

3.2. Proposed Sequential Attention Combination

The first proposed model (Figure 1(b)) uses a multi-encoder
sequential attention network. Both speech encoder and con-
textual encoder transform their respective input, the acoustic
speech features of speaker B xB and the context from speaker
A of the previous utterance uA

k−1, into hidden vector repre-
sentation

HSpEnc = SpEnc(xB). (8)

HCtxEnc = CtxEnc(uA
k−1). (9)

After that, the contextual attention decoder predicts the con-
text vector cAn based on the hidden context representations
HCtxEnc and the entire sequence of the previous output

cAn = ContextAttDec(yB
<n, HCtxEnc). (10)

Finally, given the context vector cAn and the hidden speech
representations HSpEnc, the text transcription is estimated as
yB
n

yB
n = AttDec(cAn , HSpEnc). (11)

We call this method the “Sequential attention combination”
(denoted as “SeqAttComb”).

The second proposed model (Figure 1(c)) is similar to the
second one but with a bypass connection, and the calculation
becomes as follows:

HSpEnc = SpEnc(xB). (12)

HCtxEnc = CtxEnc(uA
k−1). (13)

HDec = Dec(ŷB
<n). (14)

cAn = ContextAttDec(yB
<n, HCtxEnc). (15)

yB
n = AttDec(cAn , HDec, HSpEnc). (16)

We call this method the “Sequential attention combination
and bypass connection” (“SeqAttComb+Bypass”).

Furthermore, in this study, we also investigate two dif-
ferent decoding flows: (1) a non-continuous flow (Figure 2),
in which we provide the context information from a correct
transcription, and (2) a continuous flow (Figure 3), in which
we provide the context information from the model-predicted
text.



Fig. 2. Non-continuous decoding flow.

Fig. 3. Continuous decoding flow.

4. EXPERIMENTAL SET-UP AND RESULTS

4.1. Dataset

In this experiment, we utilized two corpora: ATR-APP1 and
ATR-SDB2, which were used to train and test all ASR models
defined in the previous section. From each dataset, 90% of the
data are assigned as the training set, 5% as the evaluation set,
and 5% as the test set.

Table 1. Specifications of ATR-APP corpus.

Title Unique Sentences Utterance
speakers duration

APP3 711 6696 10.1h
APP4 1030 8542 14.2h
APP5 1024 9367 15.7h
APP6 1009 8309 13.4h

Table 2. Specifications of ATR-SDB corpus.

Title Unique Sentences Utterance
speakers duration

TRA1 192 4630 6.47h
TRA2 21 6092 10.3h
TRA3 160 5947 8.0h
TRA4 137 6205 10.6h

ATR-APP is a large-scale speech database containing
simulated conversations between Japanese people, cover-

1http://shachi.org/resources/3448
2https://www.atr-p.com/products/sdb.html

ing a wide range of regions and ages, making it ideal for
speech recognition research on unspecified speakers (detailed
specifications in Table 1). The database contains more than
53 hours of simulated conversations between approximately
3,700 speakers in various parts of Japan. The database covers
a wide variety of speakers’ hometowns and supports a wide
range of ages, from 14 to 65 years.

ATR-SDB is a dialog speech database between two speak-
ers of Japanese, where they interact with each other using free
speech expressions (detailed specifications in Table 2). Most
of the conversations involve a conversation between hotel re-
ceptionists and customers over the phone, such as hotel reser-
vations and service inquiries. It contains over 35 hours of
simulated conversations with 510 speakers.

4.2. Model Configuration

The sampling rate of all speech utterances was 16 kHz, and
we extracted the log Mel-spectrogram (80 dimensions, 50-ms
window size, 12.5-ms time steps).

The standard ASR and the proposed ASR models used the
same speech encoder-decoder network. The speech encoder
consisted of a feed-forward neural network layer (512 units),
followed by five bidirectional LSTM layers (512 units each).
In each bidirectional LSTM layer, hierarchical subsampling
is performed. As a result, the encoder state of the last layer
of the encoder represented eight speech frames. Here, we
defined eight speech frames as a single speech block.

The context encoder is the character-embedding layer
(512 units), which converts 1293 one-shot vectors to 512-
dimensional vectors. This is followed by five bidirectional
LSTM layers (512 units each).

The composition of attention is the same for both atten-
tion to context and attention to audio, and we use the stan-
dard MLP-type attention. The decoder consists of a character-
embedding layer (512 units), an LSTM layer with an attention
mechanism (512 units), and a softmax layer. The loss func-
tion of training these models is integrated based on the cross-
entropy loss between the correct and predicted symbolic se-
quences. The batch size was 24 and the number of training
steps was 160,000, with the same settings for all models.

5. EXPERIMENTAL RESULTS

The results with a non-continuous decoding flow for the
“FlatAttComb” model are 4.1%, 13.2%, and 8.8% for the
ATR-APP, ATR-SDB, and both test sets, respectively. Over-
all, it is not superior to the standard ASR, suggesting that
the context information was not being used very effectively.
Since the context network and the ASR network are inde-
pendent of each other in this model, the output seems to
tune to the ASR network’s output and to ignore the context
information.



Table 3. Character Error Rate (CER) of ASR baseline and
proposed models on both ATR-APP and ATR-SDB corpora.

CER (%)
Model APP SDB APP + SDB

Standard ASR(Baseline) 4.1% 13.0% 8.7%
FlatAttComb 4.1% 13.2% 8.8%

Proposed models
SeqAttComb 3.8% 12.6% 8.3%
SeqAttComb+Bypass 3.7% 12.4% 8.2%
SeqAttComb+Bypass
+Continuous decoding 3.7% 12.3% 8.2%

With a Sequential Attention Network, the proposed model
“SeqAttComb” could provide improvements in both corpora
(from 4.1% to 3.8% in ATR-APP data and from 13.2% to
12.6% in ATR-SDB data). The results reveal that con-
text information can help speech recognition and improve
the recognition rate. The proposed “SeqAttComb+Bypass”
model could further improve performance, achieving 3.7%,
12.4%, and 8.2% for the ATR-APP, ATR-SDB, and both
tests sets, respectively. This also indicates that the bypass
connection could be beneficial to the recognition rate.

For the results with a continuous decoding flow, the
system needs to take the ASR error into account. “Se-
qAttComb+Bypass” model are almost the same as in the
non-continuous case. It achieved 3.8%, 12.3%, and 8.2%
for the ATR-APP, ATR-SDB, and both test sets, respectively.
This indicates that the combination approaches of a sequential
attention network is robust to the effects of ASR recognition
errors.

Figure 4 shows a typical example when the proposed
model performs well in speech recognition results. A’s ques-
tion is asking for B’s name and date, and B is answering the
question. Standard ASR and “FlatAttComb” recognize it as
a word with a similar pronunciation to B’s name, Kobayashi.
In addition, the sentence after the name is also wrong. On the
other hand, “SeqAttComb” correctly recognizes B’s name,
but misrecognizes some characters in the following sentence.
“SeqAttComb+Bypass+Continuous decoding” correctly rec-
ognizes both the name and the following sentence.

6. CONCLUSION

This study aimed to improve the speech recognition accuracy
of Japanese dialog conversations. Specifically, we utilized a
multi-encoder sequential attention network and investigated
several possible architectures. The experimental results show
that the model using Multi-Encoder Sequence Attention out-
performs the standard ASR and that the contextual informa-
tion from a dialog partner helps speech recognition.

Fig. 4. Comparision of ASR results between ASR baseline
with proposed models
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