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Abstract
We describe our submitted system for the ZeroSpeech Chal-
lenge 2019. The current challenge theme addresses the dif-
ficulty of constructing a speech synthesizer without any text
or phonetic labels and requires a system that can (1) discover
subword units in an unsupervised way, and (2) synthesize the
speech with a target speaker’s voice. Moreover, the system
should also balance the discrimination score ABX, the bit-rate
compression rate, and the naturalness and the intelligibility of
the constructed voice. To tackle these problems and achieve the
best trade-off, we utilize a vector quantized variational autoen-
coder (VQ-VAE) and a multi-scale codebook-to-spectrogram
(Code2Spec) inverter trained by mean square error and ad-
versarial loss. The VQ-VAE extracts the speech to a latent
space, forces itself to map it into the nearest codebook and pro-
duces compressed representation. Next, the inverter generates
a magnitude spectrogram to the target voice, given the code-
book vectors from VQ-VAE. In our experiments, we also inves-
tigated several other clustering algorithms, including K-Means
and GMM, and compared them with the VQ-VAE result on
ABX scores and bit rates. Our proposed approach significantly
improved the intelligibility (in CER), the MOS, and discrimi-
nation ABX scores compared to the official ZeroSpeech 2019
baseline or even the topline.
Index Terms: unsupervised unit discovery, VQ-VAE, spectro-
gram inverter, zero-speech technology

1. Introduction
Current spoken language technologies only cover about two
percent of the world’s languages. This is because most ground-
works require a large amount of paired data resources, includ-
ing a sizeable collection of spoken audio data and correspond-
ing text transcription. On the other hand, most of the world’s
languages are severely under-resourced, some of which even
lack a written form. Zero resource speech research is an ex-
treme case from low-resourced approaches that learn the ele-
ments of a language solely from untranscribed raw audio data.
This completely unsupervised technique attempts to mimic the
early language acquisition of humans. The zero resource speech
challenge (ZeroSpeech) [1, 2, 3] is directly addressing this issue
and offers participants the opportunity to advance the state-of-
the-art in the core tasks of zero resource speech technology.

In ZeroSpeech 2015 and 2017, the goal was to discover an
appropriate speech representation of the underlying language of
a dataset [1, 2]. The ZeroSpeech 2019 [3] challenge confronts
the problem of constructing a speech synthesizer without any
text or phonetic labels: TTS without T. The task requires the full

system not only to discover subword units in an unsupervised
way but also to re-synthesize the speech with a same content
to a different target speaker. It includes both ASR and TTS
components. In this paper, we describe our submitted system
for the ZeroSpeech Challenge 2019 and focus on constructing
end-to-end systems.

The top performances in discovering speech representation
in ZeroSpeech 2015 and 2017 are dominated by a Bayesian non-
parametric approach with unsupervised cluster speech features
using a Dirichlet process Gaussian mixture model (DPGMM)
[4, 5]. However, the DPGMM model is too sensitive to acous-
tic variations and often produces too many subword units and
a relatively high-dimensional posteriogram, which implies high
computational cost for learning and inference as well as more
tendencies for overfitting [6]. Therefore it is difficult to synthe-
size speech waveform from the resulting DPGMM-based acous-
tic units.

To tackle these problems and achieve the best trade-off, an
optimization method is required to balance and improve both
components. Recently, Tjandra et al. [7, 8, 9] proposed a ma-
chine speech chain that enables ASR and TTS to assist each
other when they receive unpaired data by allowing them to infer
the missing pair and optimize both models with reconstruction
loss. However, since the architecture is based on an attention-
based sequence-to-sequence framework that transforms from a
dynamic-length input into a dynamic-length output without de-
coding at the frame-level (one symbol per frame), it is less suit-
able for this challenge.

Inspired by a similar idea, we propose to utilize a frame-
based vector quantized variational autoencoder (VQ-VAE) [10]
and a multi-scale codebook-to-spectrogram (Code2Spec) in-
verter trained by mean square error (MSE) and adversarial loss.
VQ-VAE extracts the speech to a latent space and forces itself
to map onto the nearest codebook, leading to compressed repre-
sentation. Next, the inverter generates a magnitude spectrogram
to the target voice, given the codebook vector from VQ-VAE.
In our experiments, we also investigate other clustering algo-
rithms such as K-Means and GMM and compare them with the
VQ-VAE result on ABX scores and bit rate.

2. Vector Quantized Variational
Autoencoder (VQ-VAE)

A vector quantized variational autoencoder (VQ-VAE) [10] is
a variant of variational autoencoder architecture. It has several
differences compared to a standard autoencoder or a variational
autoencoder [11] (VAE). First, the encoder generates discrete
latent variables instead of continuous latent variables to repre-



Figure 1: Conditional VQ-VAEs consist of four main mod-
ules: encoder qθ(z|x), decoder pφ(x|z, s), codebooks E =
[e1, .., eK ], and speaker embedding V = [v1, .., vL].

sent the input data. Second, instead of one-to-one mapping be-
tween the input data and the latent variables, VQ-VAE forces
the latent variables to be represented by the closest codebook
vector.

Figure 1 illustrates the encoding and decoding processes
from the conditional VQ-VAE model. Here x is the input
data, s ∈ {1, .., L} is the speaker ID that is related to x,
z ∈ {1, ..,K} is a discrete latent variable, and x̂ is the re-
constructed input. Encoder qθ(z|x) and decoder pφ(x|z, s) can
be represented by any differentiable transformation (e.g., linear,
convolution, recurrent layer) parameterized by {φ, θ}. Code-
book E = [e1, e2, .., eK ] ∈ RK×De is a collection of K con-
tinuous codebook vectors with De dimensions. Speaker em-
bedding V = [v1, v2, ..., vL] ∈ RL×Dv is speaker embedding
to map speaker ID s into a continuous representation. In the
encoding step, encoder qθ(z|x) projects input x into continu-
ous representation ẑ ∈ RDe . Posterior distributions qθ(z|x) are
generated by a discretization process:

qθ(z = c|x) =

{
1 if c = argmini ‖ẑ − ei‖2
0 else

(1)

ec =

K∑
i=1

qθ(z = i|x) ei. (2)

In the discretization process, we choose closest codebook vec-
tor ec based on the index of the closest distance (e.g., L2-norm
distance) from continuous representation ẑ. To decode the data,
we use codebook ec and speaker embedding vs and feed both
into decoder pφ(x|z, s) = pφ(x|ec, vs) to reconstruct original
data x̂.

In VQ-VAE, we formulate the training objective:

LV Q = − log pφ(x|z, s)+‖sg(ẑ)−ec‖22+γ‖ẑ−sg(ec)‖22, (3)

where function sg(·) stops the gradient, defined as:

x = sg(x);
∂ sg(x)

∂ x
= 0. (4)

There are three terms in loss LV Q. The first is a negative log-
likelihood that resembles a reconstruction loss and optimizes
the encoder and decoder parameters. The second optimizes

Figure 2: Code-to-speech inverter: given a sequence of code-
book [e[1], e[2], .., e[Tz]], we duplicate each codebook based on
compression ratio r = 4 and apply multiple layers of multi-
scale 1D convolution + LeakyReLU activation function to pre-
dict the target voice linear spectrogram M̂ .

codebook vectorsE, named codebook loss. The third forces the
encoder to generate a representation near the codebook, called
commitment loss. Coefficient γ is used to scale the commitment
loss.

3. Codebook-to-Spectrogram Inverter
The codebook-to-spectrogram (Code2Spec) inverter is a mod-
ule that reconstructs the speech signal representation (e.g., lin-
ear magnitude spectrogram) M = [m[1],m[2], ...,m[Ts]] ∈
RTs×Dm , given a sequence of codebook [e[1], e[2], ..., e[Tz]] ∈
RTz×De .

In Fig. 2, we illustrate our code-to-speech inverter model.
The length of codebook sequence Tz might be shorter than Ts,
depending on the VQ-VAE encoder qθ(z|x) model. Therefore,
for an identical length between the codebook and speech repre-
sentation sequences, we need to copy r = Ts/Tz times for each
codebook e[t]; ∀t ∈ [1..Tz]. Later, duplicated codebook se-
quences [e[1], e[1], .., e[Tz], e[Tz]] ∈ RTs×De are given to the
inverter that consists of multiple layers of multi-scale 1D con-
volution, batch-normalization [12], and LeakyReLU [13] non-
linearity. In addition to the inverter, we also have a discrim-
inator module. The discriminator predicts whether the given
spectrogram is real data or is generated by the inverter, which
generates a realistic spectrogram to deceive the discriminator
[14, 15, 16]. The Code2Spec inverter has several training ob-
jectives:

M̂ = Code2Spec([e[1], e[1], .., e[Tz], e[Tz]]) (5)

LMSE = ‖M − M̂‖22 (6)

LGGAN =

{
−Disc(M̂) WGAN [17]
(Disc(M̂)− 1)2 LSGAN [18]

(7)

LDGAN =

{
Disc(M̂)− Disc(M) WGAN
Disc(M̂)2 + (Disc(M)− 1)2 LSGAN

(8)

After we define the multiple objectives for training, we up-
date each module parameter θC2S and θDisc with the following
equation:

θC2S = Optim(θC2S ,∇θC2S (αLMSE + βLGGAN ))(9)



θDisc = Optim(θDisc,∇θDssc(LDGAN )), (10)

where Optim(·, ·) is a gradient optimization function (e.g., SGD,
Adam [19]), α and β is the coefficient to balance the loss be-
tween the MSE and the adversarial loss. In the inference stage,
given the predicted linear magnitude spectrogram M̂ , we re-
construct the missing phase spectrogram with the Griffin-Lim
algorithm [20] and applied the inverse short-term Fourier trans-
form (STFT) to generate the waveform.

4. Experiment
In this section, we describe the feature extraction, the prelimi-
nary models, and our proposed models for this challenge. All
of the results were evaluated using evaluate.sh from the
English test set.

4.1. Experimental Set-up

There are two datasets for two languages, English data for the
development dataset, and a surprise Austronesian language for
the test dataset. Each language dataset contains subset datasets:
(1) a Voice Dataset for speech synthesis, (2) a Unit Discovery
Dataset, (3) an Optional Parallel Dataset from the target voice
to another speaker voice, and (4) a Test Dataset. The source
corpora of the surprise language are describe here [21, 22], and
further details can be found here [3]. In this work, we only use
(1)-(2) for training and (4) for testing.

For the speech input, we experimented with several feature
types, such as Mel-spectrogram (80 dimensions, 25-ms window
size, 10-ms time-steps) and MFCC (13 dimensions+∆ + ∆2

(total=39 dimensions), 25-ms window size, 10-ms time-steps).
Both MFCC and Mel-spectrogram are generated by the Librosa
package [23].

4.2. Official baseline and topline model

ZeroSpeech 2019 provides official baselines and toplines. The
baseline consists of a pipeline with a simple acoustic unit dis-
covery system based on DPGMM and a speech synthesizer
based on Merlin, and the topline uses gold phoneme transcrip-
tion to train a phoneme-based ASR system with Kaldi and a
phoneme-based TTS with Merlin. The performance is shown in
Table 1.
Table 1: Official ZeroSpeech 2019 baseline and topline result.

Feature ABX Bit rate
Baseline 35.63 71.98
Topline 29.85 37.73

4.3. Preliminary model

We started to explore this challenge using a simpler method and
gradually increased our models complexity.

4.3.1. Direct feature representation

We directly evaluated the ABX and the bit rate of Mel-
spectrogram and MFCC as speech representations. In Table 2,
we report each feature extraction method with respect to their
ABX and bit rates. In our preliminary experiments, MFCC pro-
duced better performances on the ABX metric than the Mel-
spectrogram. Therefore, for the rest of our discussion, we only
focus on utilizing MFCC features. However, even the MFCC
has better ABX score, the bit rate still remains too high.
4.3.2. K-Means

We trained Minibatch K-Means (with scikit-learn toolkit [24])
on the MFCC feature and varied the cluster size: 64, 128, 256.

Table 2: Direct feature representation (MFCC and Mel-spec)
result on ABX with DTW cosine distance and bit rate.

Feature ABX Bit rate
Mel-Spec 30.291 1738.38

MFCC 21.114 1737.47

We represent a data point (a speech frame) K-Means by using
the closest centroid vector to the data frame and calculate the
ABX with the DTW cosine. Table 3 reports all the models and
their configurations with respect to their ABX and bit rate.

Table 3: K-Means continuous representation result on ABX and
bit rate. C is codebook size, T is time reduction.

Model ABX / Bitrate

K-Means
(cont,

DTW cos)

#C 1T 2T 4T
64 23.56 / 553 25.97 / 280 29.41 / 136
128 23.16 / 649 24.24 / 321 28.12 / 161
256 21.90 / 744 23.73 / 369 27.17 / 182

4.3.3. Gaussian Mixture Model (GMM)

We trained GMM with diagonal covariance matrices (with
scikit-learn toolkit [24]) on the MFCC features. We varied the
number of mixtures: 64, 128, and 256. We represent a data
point (a speech frame) with the posterior probability from each
component with a Bayes rule p(z|x) ∝ p(x|z)p(z) and calcu-
late the ABX with DTW KL-divergence. In Table 4, we report
all of the models and their configurations with respect to their
ABX and bit rate.

Table 4: GMM posterior representation result on ABX and bit
rate. C is codebook size, T is time reduction

Model ABX / Bit rate

GMM
(post,

DTW KL)

#C 1T 2T 4T
64 20.81 / 1647 22.67 / 676 29.82 / 257
128 19.61 / 1705 23.06 / 704 31.19 / 281
256 18.93 / 1691 23.39 / 757 32.99 / 306

4.4. Proposed model

4.4.1. VQ-VAE

Next we describe our encoder and decoder architecture in Fig. 3
with four times the sequence length reduction. For the input and
output targets, we use the MFCC features and explore different
stride sizes to reduce the time length from 1, 2, 4, 8. We use
speaker embedding with 32 dimensions and codebook embed-
ding with 64 dimensions. We varied the number of codebooks:
64, 128, 256, 512. Batch normalization [12] and LeakyReLU
[13] activation were applied to every layer, except the last en-
coder and decoder layer. The decoder input is a concatenation
between codebook and speaker embedding in the channel axis.
We set commitment loss coefficient γ = 0.25.

4.4.2. Multi-scale Code2Spec inverter
In Fig. 3, we describe our inverter architecture. Our input is a
codebook sequence with 64 dimensions and our target output is
a sequence of linear magnitude spectrogram with 1025 dimen-
sions. The first four layers have multiple kernels with different
sizes across the time-axis. All convolution layers have stride = 1
and the “same” padding. Batch normalization and LeakyReLU
activation are applied to every layer, except the last one before
the output prediction. For the adversarial loss, we found LS-
GAN is more stable, thus LSGAN with β = 1 is used in ev-



Table 5: VQ-VAE codebook representation result on ABX and bit rate. C is codebook size, T is time reduction. Blue font denotes our
submitted system.

Model ABX / Bit rate
#CL 1T 2T 4T 8T
64 27.46 / 606 25.51 / 302 26.15 / 138 28.81 / 70

128 27.65 / 686 24.29 / 347 25.04 / 165 30.87 / 79
256 27.63 / 787 24.37 / 349 24.17 / 184 30.51 / 79

VQ-VAE
(cont,

DTW cos)
512 27.69 / 871 23.59 / 400 24.63 / 180 32.02 / 74

ery model. We independently trained the inverter to generate a
voice target speaker with a train/voice set. We have two
inverters for the English set and one for the surprise set.

4.4.3. Model training

We used Adam [19] as our first-order optimizer for both VQ-
VAE and the Code2Spec inverter. All of our models are imple-
mented with PyTorch [25] framework.

4.4.4. Results and Discussion

Table 5 reports all models and their configurations with respect
to their ABX and bit rate. Considering the balance between
the discrimination score ABX and the bit-rate compression rate,
we submitted two proposed systems: (1) 256 codebooks and 4
stride size to reduce the time length and (2) 256 codebooks and
2 stride size to reduce the time length.

We also attempted further enhancement of the synthesized
voice using several techniques, such as WaveNet [26, 27] and
GAN-based voice conversion [28]. WaveNet decoder is con-
ditioned by frame-wise linguistic features or acoustic features
with a 5ms timeshift (80 times smaller than the speech samples).
As the sample rate of the codebook embeddings of our system
was 320 times smaller than the speech samples, the Wavenet
couldn’t produced satisfying result. GANs are known to be ef-
fective for achieving high-quality voice conversion with clean
input data [29, 30]. However, our task is more challenging
due to the fact that our generated voice will always have some
distortion. Therefore, GAN-based voice conversion approach
failed to improve our performance. As a future work, we will
investigate the use of GAN-based speech enhancement [31] ap-
proaches to further improve our results.

5. Conclusions
We described our approach for the ZeroSpeech Challenge 2019
for unsupervised unit discovery. We explored many different
possibilities: feature extraction, clustering algorithm, and em-
bedding representation. For our final submission, we utilized
VQ-VAE to extract a sequence of codebook vectors. The code-
book generated by VQ-VAE has a better trade-off between ABX
and the bit rate compared to the other models such as K-Means,
GMM, or direct feature representation. To reconstruct speech
from the codebook, we trained a Code2Spec inverter to generate
a corresponding linear magnitude spectrogram. The combina-
tion between VQ-VAE and Code2Spec significantly improved
the intelligibility (in CER), the MOS, and the discrimination
ABX scores compared to the official ZeroSpeech 2019 1 base-
line or even the topline.
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Figure 3: Left: VQ-VAE encoder and decoder architecture with
4x time reduction (based on stride size in encoder layer). Right:
Code2Spec architecture. Definition: K is kernel size, C is out-
put channel, S is stride size, and T is input frame length. K:3x3
denotes 2D convolution with 3x3 kernel size across time and
frequency axis, K:[1,3,5,7] denotes 1D convolution with 4
different kernel size (1, 3, 5, 7) across time-axis.
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